Skip to content

Scientific Paper Analysis

Extract structured information from research papers, academic articles, and scientific literature including methodology, results, citations, and key findings for literature reviews, meta-analysis, and research synthesis.

Define comprehensive schemas for academic paper analysis:

from langstruct import LangStruct, Schema, Field
from typing import List, Optional, Dict
from datetime import datetime
class AuthorSchema(Schema):
name: str = Field(description="Author's full name")
affiliation: Optional[str] = Field(description="Author's institutional affiliation")
email: Optional[str] = Field(description="Author's email address")
orcid: Optional[str] = Field(description="ORCID identifier")
class CitationSchema(Schema):
title: str = Field(description="Title of cited work")
authors: List[str] = Field(description="Authors of cited work")
journal: Optional[str] = Field(description="Journal or venue name")
year: Optional[int] = Field(description="Publication year")
doi: Optional[str] = Field(description="DOI identifier")
citation_type: str = Field(description="Type of citation (supporting, contrasting, methodology)")
class MethodologySchema(Schema):
study_design: str = Field(description="Research design or methodology type")
sample_size: Optional[int] = Field(description="Number of subjects or samples")
data_collection: str = Field(description="Data collection methods")
analysis_methods: List[str] = Field(description="Statistical or analytical methods used")
materials: List[str] = Field(description="Materials, tools, or instruments used")
limitations: List[str] = Field(description="Study limitations acknowledged by authors")
class ResultSchema(Schema):
finding: str = Field(description="Key finding or result")
statistical_significance: Optional[str] = Field(description="Statistical significance (p-value, confidence interval)")
effect_size: Optional[str] = Field(description="Effect size or magnitude")
supporting_data: Optional[str] = Field(description="Supporting data or evidence")
class KeywordSchema(Schema):
keywords: List[str] = Field(description="Author-provided keywords")
research_domains: List[str] = Field(description="Research domains or fields")
methodology_tags: List[str] = Field(description="Methodology-related tags")
class ScientificPaperSchema(Schema):
title: str = Field(description="Paper title")
authors: List[AuthorSchema] = Field(description="All authors")
abstract: str = Field(description="Paper abstract")
keywords: KeywordSchema = Field(description="Keywords and research domains")
publication_info: Dict[str, str] = Field(description="Journal, volume, pages, DOI, publication date")
research_question: str = Field(description="Main research question or hypothesis")
methodology: MethodologySchema = Field(description="Research methodology and methods")
key_results: List[ResultSchema] = Field(description="Main findings and results")
conclusions: List[str] = Field(description="Author conclusions")
future_work: List[str] = Field(description="Suggested future research directions")
citations: List[CitationSchema] = Field(description="Key references cited")
funding: Optional[str] = Field(description="Funding sources")
conflicts_of_interest: Optional[str] = Field(description="Declared conflicts of interest")

Create an extractor for research paper analysis:

# Create the extractor optimized for academic content
extractor = LangStruct(
schema=ScientificPaperSchema,
model="gemini-2.5-flash", # Fast and reliable for academic content
optimize=True,
use_sources=True, # Track where information was found
temperature=0.2, # Slightly higher for nuanced interpretation
max_retries=3
)
# Example research paper text (excerpt)
paper_text = """
Machine Learning Approaches for Climate Change Prediction: A Comparative Study
Authors: Dr. Sarah Chen¹, Prof. Michael Rodriguez², Dr. Lisa Wang¹
¹Department of Environmental Science, Stanford University, Stanford, CA
²Climate Research Institute, MIT, Cambridge, MA
Abstract:
Climate change prediction remains one of the most critical challenges of our time.
This study compares the effectiveness of three machine learning approaches—Random
Forest (RF), Support Vector Machines (SVM), and Long Short-Term Memory networks
(LSTM)—for predicting temperature anomalies using 50 years of global climate data.
Our analysis of 10,000 weather stations worldwide shows that LSTM models achieve
the highest accuracy (R² = 0.89, p < 0.001) compared to RF (R² = 0.78) and SVM
(R² = 0.71). The study demonstrates that deep learning approaches can significantly
improve climate prediction accuracy, with implications for policy and adaptation planning.
Keywords: climate change, machine learning, temperature prediction, LSTM, comparative analysis
1. Introduction
Climate prediction accuracy is crucial for informed policy decisions and adaptation
strategies (Hansen et al., 2016; IPCC, 2021). Traditional statistical models have
limitations in capturing complex non-linear relationships in climate systems
(Smith & Johnson, 2020). This research addresses the question: "Which machine
learning approach provides the most accurate temperature anomaly predictions?"
2. Methodology
Study Design: Comparative experimental design using historical climate data
Sample: 50 years of daily temperature data from 10,000 weather stations (1973-2023)
Data Collection: National Oceanic and Atmospheric Administration (NOAA) database
Analysis Methods:
- Random Forest with 1000 trees
- Support Vector Machine with RBF kernel
- LSTM with 128 hidden units, 3 layers
- 80/20 train-test split with 5-fold cross-validation
Materials: Python 3.9, TensorFlow 2.8, Scikit-learn 1.1
Limitations: Limited to temperature data only, potential geographic bias
3. Results
The LSTM model achieved superior performance across all metrics:
- LSTM: R² = 0.89 (95% CI: 0.87-0.91), RMSE = 0.34°C, p < 0.001
- Random Forest: R² = 0.78 (95% CI: 0.75-0.81), RMSE = 0.45°C
- SVM: R² = 0.71 (95% CI: 0.68-0.74), RMSE = 0.52°C
Regional analysis showed LSTM improvements were consistent across all climate zones,
with the largest gains in tropical regions (R² improvement of 0.15 over RF).
4. Conclusions
LSTM networks provide significantly better climate prediction accuracy than
traditional machine learning approaches. The 14% improvement in R² represents
a substantial advance for climate modeling applications.
Future research should explore: (1) integration of satellite data, (2) ensemble
methods combining multiple ML approaches, (3) real-time prediction systems.
Funding: This research was supported by NSF Grant #2045789 and NASA Climate Grant #80NSSC21K1234.
Conflicts: The authors declare no conflicts of interest.
References:
Hansen, J., Sato, M., & Kharecha, P. (2016). Global temperature evolution: Recent
trends and some pitfalls. Journal of Climate, 29(4), 1265-1281.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press.
Smith, A., & Johnson, B. (2020). Limitations of traditional climate models.
Nature Climate Change, 10(8), 723-729.
"""
# Extract paper information
result = extractor.extract(paper_text)
print("Scientific Paper Analysis:")
print(f"Title: {result.entities.title}")
print(f"Authors: {[author.name for author in result.entities.authors]}")
print(f"Research Question: {result.entities.research_question}")
print(f"Sample Size: {result.entities.methodology.sample_size:,}")
print(f"Key Results: {len(result.entities.key_results)} findings")
print(f"Citations: {len(result.entities.citations)} references")
# Show methodology details
print(f"\nMethodology:")
print(f"Study Design: {result.entities.methodology.study_design}")
print(f"Analysis Methods: {', '.join(result.entities.methodology.analysis_methods)}")
# Display key findings
print(f"\nKey Findings:")
for i, result_item in enumerate(result.entities.key_results, 1):
print(f"{i}. {result_item.finding}")
if result_item.statistical_significance:
print(f" Statistics: {result_item.statistical_significance}")
class ClinicalTrialSchema(Schema):
trial_phase: Optional[str] = Field(description="Clinical trial phase (I, II, III, IV)")
participants: int = Field(description="Number of study participants")
inclusion_criteria: List[str] = Field(description="Patient inclusion criteria")
exclusion_criteria: List[str] = Field(description="Patient exclusion criteria")
primary_endpoint: str = Field(description="Primary outcome measure")
secondary_endpoints: List[str] = Field(description="Secondary outcome measures")
adverse_events: List[str] = Field(description="Reported adverse events")
ethics_approval: Optional[str] = Field(description="Ethics committee approval details")
class MedicalPaperSchema(ScientificPaperSchema):
clinical_trial: Optional[ClinicalTrialSchema] = Field(description="Clinical trial details")
medical_keywords: List[str] = Field(description="Medical Subject Headings (MeSH)")
patient_population: str = Field(description="Target patient population")
interventions: List[str] = Field(description="Medical interventions studied")
medical_extractor = LangStruct(schema=MedicalPaperSchema)
class AlgorithmSchema(Schema):
name: str = Field(description="Algorithm name")
complexity: Optional[str] = Field(description="Time/space complexity (Big O notation)")
novelty: str = Field(description="Novel contribution or improvement")
comparison_baseline: List[str] = Field(description="Algorithms compared against")
class CSPaperSchema(ScientificPaperSchema):
algorithms: List[AlgorithmSchema] = Field(description="Algorithms presented")
datasets: List[str] = Field(description="Datasets used for evaluation")
evaluation_metrics: List[str] = Field(description="Performance metrics")
code_availability: Optional[str] = Field(description="Code repository or availability")
reproducibility: str = Field(description="Reproducibility information")
cs_extractor = LangStruct(schema=CSPaperSchema)
class EnvironmentalDataSchema(Schema):
location: str = Field(description="Study location or geographic area")
time_period: str = Field(description="Study time period")
environmental_variables: List[str] = Field(description="Environmental factors measured")
measurement_methods: List[str] = Field(description="Data collection instruments/methods")
data_sources: List[str] = Field(description="Data sources (satellites, sensors, surveys)")
class EnvironmentalPaperSchema(ScientificPaperSchema):
environmental_data: EnvironmentalDataSchema = Field(description="Environmental study data")
ecological_impact: List[str] = Field(description="Ecological implications")
policy_implications: List[str] = Field(description="Policy recommendations")
env_extractor = LangStruct(schema=EnvironmentalPaperSchema)

Extract information for systematic reviews:

class LiteratureReviewSchema(Schema):
research_topic: str = Field(description="Main research topic")
search_strategy: str = Field(description="Literature search methodology")
inclusion_criteria: List[str] = Field(description="Study inclusion criteria")
exclusion_criteria: List[str] = Field(description="Study exclusion criteria")
studies_included: int = Field(description="Number of studies included")
quality_assessment: str = Field(description="Study quality assessment method")
synthesis_method: str = Field(description="Data synthesis approach")
main_findings: List[str] = Field(description="Key meta-analysis findings")
heterogeneity: Optional[str] = Field(description="Study heterogeneity assessment")
bias_assessment: List[str] = Field(description="Publication bias assessment")
review_extractor = LangStruct(schema=LiteratureReviewSchema)

Extract and analyze citation patterns:

class CitationAnalysisSchema(Schema):
total_citations: int = Field(description="Total number of citations")
self_citations: int = Field(description="Number of self-citations")
citation_patterns: List[str] = Field(description="Citation pattern analysis")
key_references: List[CitationSchema] = Field(description="Most frequently cited works")
citation_recency: str = Field(description="Age distribution of citations")
interdisciplinary_scope: List[str] = Field(description="Disciplines of cited works")
def analyze_citations(paper_text: str):
citation_extractor = LangStruct(schema=CitationAnalysisSchema)
return citation_extractor.extract(paper_text)
# Extract citation patterns
citation_analysis = analyze_citations(paper_text)
print(f"Citation Analysis:")
print(f"Total citations: {citation_analysis.entities.total_citations}")
print(f"Key reference areas: {citation_analysis.entities.interdisciplinary_scope}")

Process multiple papers for systematic reviews:

from pathlib import Path
class LiteratureProcessor:
def __init__(self, schema=ScientificPaperSchema):
self.extractor = LangStruct(schema=schema)
self.citation_analyzer = LangStruct(schema=CitationAnalysisSchema)
def process_paper_collection(self, papers_folder: Path):
"""Process a collection of papers for literature review"""
paper_files = list(papers_folder.glob("*.txt")) + list(papers_folder.glob("*.pdf"))
# Prepare documents for batch processing
paper_texts = []
file_names = []
for paper_file in paper_files:
try:
# Read paper content (handle both txt and pdf)
if paper_file.suffix == '.pdf':
paper_text = self.extract_pdf_text(paper_file)
else:
paper_text = paper_file.read_text(encoding='utf-8')
paper_texts.append(paper_text)
file_names.append(paper_file.name)
except Exception as e:
print(f"Error reading {paper_file}: {e}")
# Process all papers in batch
paper_results = self.extractor.extract(paper_texts)
citation_results = self.citation_analyzer.extract(paper_texts)
# Combine results
results = []
for i, (paper_data, citation_data) in enumerate(zip(paper_results, citation_results)):
results.append({
'file': file_names[i],
'paper_data': paper_data,
'citation_analysis': citation_data,
'processed_at': datetime.now()
})
print(f"Processed: {file_names[i]}")
return results
def extract_pdf_text(self, pdf_path: Path) -> str:
"""Extract text from PDF files (requires PyPDF2 or similar)"""
# Implementation depends on your PDF processing library
# Example with PyPDF2:
# import PyPDF2
# with open(pdf_path, 'rb') as file:
# reader = PyPDF2.PdfReader(file)
# return ''.join([page.extract_text() for page in reader.pages])
pass
# Usage for systematic review
processor = LiteratureProcessor()
papers = processor.process_paper_collection(Path("./literature_review/"))
# Analyze collected data
total_papers = len(papers)
average_citations = sum(p['citation_analysis'].entities.total_citations for p in papers) / total_papers
common_methods = {} # Analyze common methodologies across papers

Compare methodologies across multiple papers:

class MethodologyComparisonSchema(Schema):
common_methods: List[str] = Field(description="Methodologies used across multiple studies")
unique_approaches: List[str] = Field(description="Novel or unique methodological approaches")
sample_size_range: str = Field(description="Range of sample sizes across studies")
geographic_coverage: List[str] = Field(description="Geographic regions covered")
temporal_coverage: str = Field(description="Time periods covered across studies")
quality_indicators: List[str] = Field(description="Study quality indicators")
gaps_identified: List[str] = Field(description="Research gaps identified")
def synthesize_literature(papers_data: List[dict]):
"""Synthesize findings from multiple papers"""
# Combine all paper texts for comparative analysis
combined_text = "\n\n--- PAPER SEPARATOR ---\n\n".join([
f"PAPER {i+1}: {paper['paper_data'].entities.title}\n{paper['paper_data'].original_text[:2000]}..."
for i, paper in enumerate(papers_data)
])
synthesizer = LangStruct(schema=MethodologyComparisonSchema)
return synthesizer.extract(combined_text)
# Perform literature synthesis
synthesis = synthesize_literature(papers[:10]) # Analyze first 10 papers
print(f"Common methodologies: {synthesis.entities.common_methods}")
print(f"Research gaps: {synthesis.entities.gaps_identified}")

Generate comprehensive research analysis reports:

from langstruct.core.export_utils import ExportUtilities
import pandas as pd
class ResearchReportGenerator:
def generate_literature_review_report(self, papers_data: List[dict], output_path: str):
"""Generate comprehensive literature review report using LangStruct's export utilities"""
# Create summary statistics
summary_stats = {
'total_papers': len(papers_data),
'author_count': self.count_unique_authors(papers_data),
'methodology_distribution': self.analyze_methodologies(papers_data),
'citation_statistics': self.analyze_citations(papers_data)
}
# Export each paper's data to JSON
for i, paper in enumerate(papers_data):
result = paper['paper_data']
ExportUtilities.save_json(result, f"{output_path}_paper_{i:03d}.json")
# Create DataFrame with paper summaries
papers_df = self.create_papers_dataframe(papers_data)
# Save to CSV (if pandas available)
try:
papers_df.to_csv(f"{output_path}_papers_summary.csv", index=False)
print(f"Literature review data exported:")
print(f" - Individual papers: {output_path}_paper_*.json")
print(f" - Summary: {output_path}_papers_summary.csv")
except ImportError:
print("Pandas not available for CSV export")
print(f"Individual paper data exported to: {output_path}_paper_*.json")
def create_papers_dataframe(self, papers_data: List[dict]) -> pd.DataFrame:
"""Create pandas DataFrame from papers data"""
rows = []
for paper in papers_data:
data = paper['paper_data'].entities
rows.append({
'Title': data.title,
'Authors': '; '.join([a.name for a in data.authors]),
'Journal': data.publication_info.get('journal', 'N/A'),
'Year': data.publication_info.get('year', 'N/A'),
'Sample_Size': data.methodology.sample_size if data.methodology else 'N/A',
'Study_Design': data.methodology.study_design if data.methodology else 'N/A',
'Key_Results_Count': len(data.key_results),
'Citations_Count': len(data.citations),
'DOI': data.publication_info.get('doi', 'N/A')
})
return pd.DataFrame(rows)
# Usage
report_generator = ResearchReportGenerator()
report_generator.generate_literature_review_report(papers, "climate_change_ml_review")

Research Efficiency

Process hundreds of papers 10x faster than manual review

Comprehensive Analysis

Extract methodology, results, citations, and key findings systematically

Source Tracking

Maintain complete traceability to original paper sources

Systematic Reviews

Perfect for meta-analysis and systematic literature reviews

  • Literature Reviews - Systematic analysis of research domains
  • Meta-Analysis - Extract quantitative data for statistical synthesis
  • Grant Writing - Identify research gaps and supporting evidence
  • Citation Analysis - Track research impact and influence patterns
  • Research Assessment - Analyze institutional research output
  • Collaboration Analysis - Identify research collaboration patterns
  • Trend Analysis - Track emerging research directions
  • Impact Measurement - Assess research influence and citations
  • Drug Discovery - Analyze scientific literature for drug targets
  • Clinical Trial Analysis - Extract data from clinical research papers
  • Competitive Intelligence - Monitor competitor research publications
  • Regulatory Submissions - Compile supporting scientific evidence
  • Evidence Synthesis - Compile scientific evidence for policy decisions
  • Research Gaps - Identify areas needing further research
  • Expert Identification - Find leading researchers in specific domains
  • Technology Assessment - Analyze scientific basis for new technologies
# Domain-specific prompts for different research areas
medical_prompt = """
You are analyzing a medical research paper. Focus on:
1. Clinical significance and statistical significance
2. Patient safety and adverse events
3. Study design quality and potential biases
4. Generalizability to broader patient populations
5. Clinical implications and practice recommendations
6. Regulatory considerations and approval pathways
"""
medical_extractor = LangStruct(
schema=MedicalPaperSchema,
system_prompt=medical_prompt,
model="gemini-2.5-flash"
)
class StudyQualitySchema(Schema):
study_quality_score: float = Field(description="Overall quality score (0-10)")
bias_risk: str = Field(description="Risk of bias assessment (low/moderate/high)")
methodological_rigor: List[str] = Field(description="Methodological strengths")
limitations: List[str] = Field(description="Study limitations and weaknesses")
reproducibility_score: float = Field(description="Reproducibility assessment (0-10)")
ethical_considerations: str = Field(description="Ethical approval and considerations")
quality_assessor = LangStruct(schema=StudyQualitySchema)

Ready to start analyzing scientific literature?

  1. Installation - Set up LangStruct for academic research
  2. Optimization - Improve accuracy for your research domain
  3. Source Grounding - Track information back to original papers
  4. Batch Processing - Process large literature collections efficiently

Start with Examples

Try the sample schemas with your research papers

Customize for Your Field

Adapt schemas for your specific research domain

Build Review Workflows

Create systematic review and quality assessment processes

Scale Your Research

Process entire research domains with automated analysis